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This paper RapunSL

Separation Logic
capable of handling

Quantum Entanglement and Measurement



Question.
Why Quantum Separation Logic?

Answer.
Modular reasoning for scalability!!
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Quick overview: RapunSL :

Existing Quantum Separating Logics FRAME fPYC{Q)
= chal reasoning for each {PxRYC{Qx*R)
disentangled component.

RapunSL Hoare-SUM
+ reasoning about superposition SR iU SN €53 AR I0ZY,

state P+ P} C{Q1+Qa}

| | Hoare-MIX
+ compatible with measurements {PYC{Q) [P, C{Qy)

{PLd Py} C{Q1® Q2 }
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x| 1) means  qubit x has state | 1)

(x,y) — [10) means  qubits x,y have state | 10)

Hoare triple
{xl—> |1 0) } NOT [x] {XI—> | 1) }

Under the pre-condition x +— |0)
If we execute NOT gate
We get the post-condition x — | 1)
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then

To formalize this in a logic,

Separating Conjunction | Separable state
Px (O meaning PR O
For example,
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Previous Work: Quantum X Separation Logic -

Frame Meaning. ..
{P}C{Q} Focus on
{P+xR}C{QxR} local entangled component P
Prove above, then add
disentangled resource R

For example,

{x—10) } C{x—]|1)}
{x— [0y ky— 1) }C{xr|1)*xy—]|1)}

Entanglement-Local reasoning Question: s this enough to

achieve “Modular reasoning’”?
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Problem 1: Frame is not enough

Observation 2

For some unitary map C,
{ (x0,x1) = [00) } C' {(x0,%1) > |00) |
{ (x0,%1) = |11) } C { (x0,%1) > |11) }
then what if the input is entangled?
(x0,%1,y) — «|000) 4+ B |111)

Because. .. Linearity of C

{(XO,Xl,Y) — « [000) 4 (3 \111}} C {(XO,Xl,y) — « [000) 4 (3 |111>}

However...
Frame rule is only for disentangled y — |y)
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Our logic: RapunSL P=--|aP|P+Q]| -

a (>_(I—>h//)) — X aly)

X ly) + X |lg) <= X (ly)+|@)

PrCQ;
1aP} € 1aQj

Hoare-SCALAR

{P1}C{Q1}] {Py} C{Q2}
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Hoare-SUM
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Another perspective: intuitive — formal proof =

Claim: Scalar and Sum bridge intuitive and formal proofs.

Question: Does program C implement U ?

Intuitive Proof: It suffices to check for the computational basis

Vb e {0,1}. X+ |b) =¢ x- U|b).

RapunSL Proof: We prove
vbe {0,1}". {x— |V} C{zx—UB)}

From Hoare-SCALAR and Hoare-SUM

V[P) 2= [9) ) C = UlY) } basis-locality



Hmm..., how can such a simple
thing be new?
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Problem 2: Measurement 17

C = measx
{x—=10)} C {x—10)} x> |1)}C {x— 1)} onre SCALAT.
{x—=al0)+41)} C{x— al0)+5]1)} Hoare-SUM
— C = noop

Measurement is not linear!
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Idea: Branching as Measurement Outcomes =

{ x> al0)y+p4|1)
x> a|0)+p|1) }

meas|Xx]
{ “Some branching has happened.
If it branched to “0”, the state is (o + a') | 0).

If it branched to “1”, the state is  (f+ /)| 1).” }

Measurement is linear for each branch
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RapunSL P=---|P®" Q]| -
C = meas’x
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RapunSL P=---|P®" Q]| -
C = meas’x
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Solution: Mixing operator
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RapunSL P=---|P®" Q]| -
C = meas’x
{x—=0)} C{ x—[0) & x—0 } x|} C{x—08" x— 1) }

{x—al0)+8[1)} C{ x—al0) & x— F]1) }

(P jCaQiy Py Ci@ay

H -MIX
(P&t P}t C{Q13" Q2 } oate

outcome-locality



RapunSL: Three Localities
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| {P}YC{Q}
entanglement-locality {PxRYC {QxR}

1P C{Qy (P C{Q;

basis-locality

{PL+P} C{Q1+Q2}

P ey  {P)C{Qs

outcome-locality { P, dt pz} C {Q1 B* Qz}

FRAME

Hoare-SUM

Hoare-MIX



And...

Many Rules! 28

(P+Q) xR (P*R)+(Q*R)
(PO Q) xR (P*R)&" (Q*R)

(P @ P)+(Q18"Q2) I (P + Q1) B (P2 + Q2)

Please see the paper for details!



And...

Many Rules!

29

(P+Q)*R-A- (PxR)+(Qx*R)

(P®"' Q)+« R (PxR)D" (Q* R)

(P " Py)

+ (Q1 8" Q2) IF (P + Q1) &' (P2 + Q2)

— : Require side-condition

P, 0, R : Frameable

= class of “nice” propositions



And...

Many Rules!

29

(P+Q)* R (PxR)+(Q*R)
(P®"' Q)+« R (PxR)D" (Q* R)

(P @ P)+(Q18"Q2) I (P + Q1) B (P2 + Q2)

— : Require side-condition

>

P, Q
|

P, O, R : Frameable = class of “nice” propositions

ab>Vv | x|y

C Frameable
PAQIPXQIP+QI P&'QI...



Trade-off regarding measurements
& Scalability in practice
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Treatment of global phase

31

Global phase =  Complex coefficient (of size 1) of a vector
Fact. Global phase is not observable

[ 1) = — 1) = i[1)
However. ..

In RapunSL, global phase CANNOT be ignored

If we ignore It,
X 1) <& XB-—]1)

X ly)+]1) < X |y)—|1)

SUM
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Model: Vector state

2

Model of RapunSL is based on

Vector states

There is a trade-off

Vector

rather than

Density Matrix

Global Phase

Can blow up

Measurement .
Exponentially

Density matrices

LHave been preferred
as a model
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Handling Exponential Blow-Up 5

. 2" branches
After N measurements, @ll =1 @lz= L. @l =l P, .

[150s. . .1,

1 =1

( Notation P. = P,® P, )

Indeed, blow-up is sometimes unavoidable...

Basis-locality V.S. Size

But in many practical cases, you can actually avoid it!
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Case Study Error Correction: Bit Flip Code

error e syndrome measurement e TECOVETY

*  if ;1_ Eh-e-n_)_(-: ? 7 I if a A —b then X |—
T 5 .

/  if e then X ! O—A—D—2 o [ @ A b then X F—
I 5 b

“ ::if__;?_}[‘_?_”__f(_-: S— A —D I if —a Abthen X |—

Bit flip EC |
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First step: Reduce it to classical case

{(x,y,2) — XXX |iii) }

——if a A b then X }—

——{f a A b then X —

{@azo,l . @

distributivity

{ (X,y,2) — |112) * (EB

b=0,1

a=0,1

On,e e * (%,3,2) 1 idi) |

not depend on a or b

b=0,1
5@,614—62 X @ 5b,€2—|-€3) }



Case Study: Handling Blow-Up

First step: Reduce it to classical case

{(x,y,2) — XXX |iii) }

yndrome measureme nt very
x ——0 ® —]if a A b then X]—
y —— A —D—o o———if a A b then X |—
: b Lo :
~A f —a A b then X —

a=0,1 E 1N
(B torire D

Second step: Hide &

On,e e * (%,3,2) 1 idi) |
not depend on a or b

3 P: frameable { (X,y,2) —> |ii) * ( P ) }
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Case Study: Handling Blow Up .

{(x,y,2) = XXX |iii) }  C { (x,y,2) — liii) P }

P : Frameable

Hoare-Scalar
Hoare-SUM

{ (X,y,2) — X X2X y:i_(),l o |141) } C { ((X,y, Z) F D Lo Qi \Zzz>) x P }

ged. [ ]

P: Frameable is used implicitly



Other Case Studies
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Many practical case studies

Dirty Qubit: Implementation of CCCX by Toffoli Gates
Quantum Teleportation

Lattice Surgery: Implementation of CNOT with Measurements
Error Correction 1: Bit-Flip Code

Error Correction 2: Shor’s Code
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Contribution:

New logic RapunSL

PO 1Q}
{P+xR}C{Qx*xR}

K

I €58 O8 (28 BN €5 D 2R 0020

{P1+P2}C{Q1+Q2}

@ N CQ (PO

[P @ Py} C{Q1 B Q2 }

and many practical case studies

Future Work:

* Relational logic
 Automation

* Non-determinism /
Concurrency

Thank you!!



