Quantum Controlled Measurement via Program Transformation

(work-in-progress) PLanQC 2023

Kengo Hirata (Edinburgh University, Kyoto University) Takeshi Tsukada (Chiba University)

This talk

About the semantics of programs like

// p, q: qbit
qif q {
 p ← meas(p)
} else {
 nope
}

Motivating Example

Quantum SWITCH

qif $x \{ EF(y) \}$ else { $FE(y) \}$ E, F : quantum channel

cannot be written in most of the languages.

Problem: semantics for quantum controlled channel is illdefined in general.

Previous Work and Question

QuGCL [Ying 16] has "qif" & measurement (without limitation)

lacks physical implementation

some ambiguities in semantics

Q. Can we define a clearer semantics with simple physical implementation for such programs?

```
qif q {
  p \leftarrow meas(p)
} else {
   nope
```

Contribution

Proposal: Program Transformation Technique

A program with measurement inside "qif"

• A program without them.

Result: A simple physical implementation

Application: <u>Quantum-controlled while loop</u>

Outline

- Program transformation
- Comparison: Equality of semantics
- Application: Quantum controlled while loop

Language & Example

Program Transformation Algorithm Flow

2 З

Deferring measurements (inside of "qif")

Deferring measurements (outside of "qif")

Introduction of dummy value

Arrangement

1. Deferring measurements (inside of "qif")

 p_1

2. Deferring measurements (outside of "qif")

2 3

qif q { qif p_0 { $p_1 \leftarrow |1\rangle$ } else { $p_1 \leftarrow |0\rangle$ } $b \leftarrow meas(p_0)$ } else { $p_1 \leftarrow p_0$ qif q { qif p_0 { $p_1 \leftarrow |1\rangle$ } else { $p_1 \leftarrow |0\rangle$ } else { $p_1 \leftarrow p_0$ } $b \leftarrow meas(p_0)$

2. Deferring measurements (outside of "qif")

2. Deferring measurements (outside of "qif")

Type Mismatch (violate the linearity) qif q { qif p_0 { $p_1 \leftarrow |1\rangle$ p_0 alive } else { $p_1 \leftarrow |0\rangle$ } else { p_0 consumed $p_1 \leftarrow p_0$ $b \leftarrow \text{meas}(p_0)$

Program Transformation 3. Introduction of dummy value

qif q { qif q { qif p_0 { qif *p*₀ { $p_1 \leftarrow |1\rangle$ $p_1 \leftarrow |1\rangle$ 2 } else { } else { $p_1 \leftarrow |0\rangle$ $p_1 \leftarrow |0\rangle$ 3 } else { } else { $p_1 \leftarrow p_0$ $p_1 \leftarrow p_0$ p_0 : consumed $\mathbf{p_0} \leftarrow \text{dummy}$ 4 $b \leftarrow \text{meas}(p_0)$ $b \leftarrow \text{meas}(p_0)$ p_0 : used again

3. Introduction of dummy value

2

3

4

3. Introduction of dummy value

2

3

4

4. Arrangement

qif q { qif *p*₀ { $p_1 \leftarrow |1\rangle$ } else { $p_1 \leftarrow |0\rangle$ } else { $p_1 \leftarrow p_0$ $p_0 \leftarrow | + \rangle$ $b \leftarrow \text{meas}(p_0)$

4. Arrangement

Program Transformation Algorithm Flow

2 З

Deferring measurements (inside of "qif")

Deferring measurements (outside of "qif")

Introduction of dummy value

Arrangement

Outline

- Program transformation
- Comparison: Equality of semantics
- Application: Quantum controlled while loop

Equality of semantics

Quantum switch

<u>Theorem</u>

Our semantics via program transformation defines the correct semantics on Quantum SWITCH.

Equality of semantics

Comparison with Ying's semantics for QuGCL

Ying defined two semantics for QuGCL.

- 1. Original semantics
- General semantics determined for each <u>parameter</u> (includes 1. as an instance)

<u>Theorem</u>

In the simplest example we studied above, "the choice of dummy value"

= "parameter for general semantics of QuGCL".

Equality of semantics Comparison with Abbott et al. 20

[Abbott et al. 20]

To define a quantum controlled channel, we need not only the Kraus decomposition of channels, but <u>additional information of "initial states of environment"</u>.

<u>Observation</u>

The "initial states of environment" is closely related to our "dummy value".

Found non-trivial connection between [Ying 16] and [Abbott et al. 20]

Outline

- Program transformation
- Comparison: Equality of semantics
- Application: Quantum controlled while loop

Background

// d : Data, q : qbit qwhile q { $(d, q) \leftarrow M(d)$ }

	Semantics	Physical implementation	Measurement in M
Bădescu et al. 15	No		
Ying et al. 14	Yes (Fock space)	No	Yes
Sabry et al. 18	Yes (List of qubits)	Yes	No

Quantum controlled while loop Question

[Sabry et al. 18] Semantics with list of qubits

Has implementation 🛛 🔀 <u>M has to be unitary</u>

Q. Can we remove this limitation by moving measurements outside of "qwhile"?

A. Yes!

Quantum-while with measurement

Sabry et al.'s language

= Quantum-recursion + list of qubit

Program Transformation

```
Source program
```

// d : Data, q : qbit qwhile q { $(d, q) \leftarrow M(d)$ }

First step: Apply the program transformation to M

$$M \mapsto \begin{cases} q \leftarrow |0\rangle \\ a \leftarrow |0\cdots0\rangle \end{cases}$$
 Initial state
$$(d, q, a) \leftarrow \overline{M}(d, q, a) \end{cases}$$
 Unitary
$$meas(a) \end{cases}$$
 Meas.

 $\overline{\mathsf{M}}$: unitary part of M

Program Transformation

```
Source program
```

// d: Data, q: qbit qwhile q { $(d, q) \leftarrow \mathsf{M}(d)$ First step: Apply the program transformation to M $q_i \leftarrow |0\rangle$ $a_i \leftarrow |0 \cdots 0\rangle$ Μ \mapsto $(d, q_i, a_i) \leftarrow \overline{\mathsf{M}}(d, q_i, a_i)$ $meas(a_i)$ \mathbf{n} Prepare "list of qs and as", and apply \overline{M} at the *i*-th iteration

Idea:

Program Transformation

Second step: rewrite qwhile

// d: Data, q: qbit, lq: [qbit], la: [qbit], lq: list of qfun W(d, q, lq, la) { la: list of a qif q { helper function ____new_q = lq.next() if let (q' :: lq', a' :: la') = (lq, la) { $(d, q', a') \leftarrow \mathsf{M}(d, q', a')$ Apply M $(d, lq', la') \leftarrow W(d, q', lq', la')$ Recursion } (d, q :: lq', a' :: la') $(d, lq, la) \leftarrow W(d, q, |0 \cdots 0\rangle, |0 \cdots 0\rangle)$ main meas(la)part

Conclusion

- We propose a program transformation technique which moves measurement out of "qif" statement.
 - Physical implementable semantics.
 - Found non-trivial connection between Ying's work and Abbott et al's work.
 - This technique is also applicable to "qwhile".

Future Work

In some cases, we do not need to introduce dummy value.
 (e.g. Quantum SWITCH)

 And in some cases, quantum control on CPTP maps is well-defined [Abbott et al. 20]. (e.g. Quantum SWITCH) (when "then" and "else" branches uses

the same combination of CPTP maps)