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• About the semantics of programs like

This talk

// , : qbit 
qif  { 

  meas( ) 
} else { 

nope 
}

p q
q

p ← p

q

p



Quantum SWITCH 

cannot be written in most of the languages. 

Problem: semantics for quantum controlled channel is ill-
defined in general.

Motivating Example

qif  {  ( )  } else {  ( )  }x EF y FE y ,  : quantum channelE F

qif  {  ( )  } else { ..q U p

Only unitaries



QuGCL [Ying 16] has “qif” & measurement (without limitation) 

lacks physical implementation 

some ambiguities in semantics 

Q. Can we define a clearer semantics with simple 
physical implementation for such programs? 

Previous Work and Question

qif  { 
  meas( ) 

} else { 
nope 

}

q
p ← p

?



Proposal:  Program Transformation Technique  

• A program with measurement inside “qif” 

• A program without them. 

Result:  A simple physical implementation 

Application:  Quantum-controlled while loop

Contribution

Deferring 
measurement



• Program transformation 

• Comparison: Equality of semantics 

• Application: Quantum controlled while loop

Outline



Language & Example
Program Transformation

Types

qif  { 
  meas( ) 

} else { 
nope 

}

q
p ← p

qif  { 
  meas( ) 
if  { 

   
} else { 

   
} 

} else { 
   

}

q
b ← p0

b
p1 ← |1⟩

p1 ← |0⟩

p1 ← p0

(Rough Idea)

T  ::=   qbit  |  bool

linearly used

Example (Well formed)



Algorithm Flow
Program Transformation

1

2

3

4

Deferring measurements (inside of “qif”)

Deferring measurements (outside of “qif”)

Introduction of dummy value

Arrangement



1. Deferring measurements (inside of “qif”)
Program Transformation

1

2

3

4

qif  { 
  meas( ) 
if  { 

   
} else { 

   
} 

} else { 
   

}

q
b ← p0

b
p1 ← |1⟩

p1 ← |0⟩

p1 ← p0

qif  { 
qif  { 

   
} else { 

   
} 
  meas( ) 

} else { 
   

}

q
p0

p1 ← |1⟩

p1 ← |0⟩

b ← p0

p1 ← p0

p0

｜0〉 p1

p0

｜0〉 p1



2. Deferring measurements (outside of “qif”)
Program Transformation

1

2

3

4

qif  { 
qif  { 

   
} else { 

   
} 
  meas( ) 

} else { 
   

}

q
p0

p1 ← |1⟩

p1 ← |0⟩

b ← p0

p1 ← p0

qif  { 
qif  { 

   
} else { 

   
} 

} else { 
   

} 
  meas( )

q
p0

p1 ← |1⟩

p1 ← |0⟩

p1 ← p0

b ← p0



2. Deferring measurements (outside of “qif”)
Program Transformation

1

2

3

4

qif  { 

} else { 

}

q

then

else

measure

measure

qif  { 

} else { 

} 

q

then

else

measure
measure
measure



2. Deferring measurements (outside of “qif”)
Program Transformation

1

2

3

4

qif  { 
qif  { 

   
} else { 

   
} 

} else { 
   

} 
  meas( )

q
p0

p1 ← |1⟩

p1 ← |0⟩

p1 ← p0

b ← p0

 alivep0

 consumedp0

}
}

Type Mismatch (violate the linearity)



3. Introduction of dummy value
Program Transformation

1

2

3

4

qif  { 
qif  { 

   
} else { 

   
} 

} else { 
   

} 
  meas( )

q
p0

p1 ← |1⟩

p1 ← |0⟩

p1 ← p0

b ← p0

qif  { 
qif  { 

   
} else { 

   
} 

} else { 
   
  dummy 

} 
  meas( )

q
p0

p1 ← |1⟩

p1 ← |0⟩

p1 ← p0

p0 ←

b ← p0

: consumedp0

: used againp0



3. Introduction of dummy value
Program Transformation

1

2

3

4

qif  { 
qif  { 

   
} else { 

   
} 

} else { 
   

} 
  meas( )

q
p0

p1 ← |1⟩

p1 ← |0⟩

p1 ← p0

b ← p0

qif  { 
qif  { 

   
} else { 

   
} 

} else { 
   
   

} 
  meas( )

q
p0

p1 ← |1⟩

p1 ← |0⟩

p1 ← p0

p0 ← |0⟩

b ← p0

: consumedp0

Choose
|0⟩



3. Introduction of dummy value
Program Transformation

1

2

3

4

qif  { 
qif  { 

   
} else { 

   
} 

} else { 
   

} 
  meas( )

q
p0

p1 ← |1⟩

p1 ← |0⟩

p1 ← p0

b ← p0

qif  { 
qif  { 

   
} else { 

   
} 

} else { 
   
   

} 
  meas( )

q
p0

p1 ← |1⟩

p1 ← |0⟩

p1 ← p0

p0 ← | + ⟩

b ← p0

: consumedp0

Choose
| + ⟩



4. Arrangement
Program Transformation

1

2

3

4

qif  { 
qif  { 

   
} else { 

   
} 

} else { 
   
   

} 
  meas( )

q
p0

p1 ← |1⟩

p1 ← |0⟩

p1 ← p0

p0 ← | + ⟩

b ← p0

Controlled 
isometry}
Measurement}



4. Arrangement
Program Transformation

1

2

3

4

   
qif  { 

  CH( ) 
,   CNot( , ) 

} else { 
,   swap( , ) 

} 
  meas( )

p1 ← | + ⟩
q

p1 ← p1

p0 p1 ← p0 p1

p0 p1 ← p0 p1

b ← p0

Controlled 
Unitary

}

Measurement}
}

Initial State



Algorithm Flow
Program Transformation

1

2

3

4

Deferring measurements (inside of “qif”)

Deferring measurements (outside of “qif”)

Introduction of dummy value

Arrangement



• Program transformation 

• Comparison: Equality of semantics 

• Application: Quantum controlled while loop

Outline



Quantum switch
Equality of semantics

Theorem
Our semantics via program transformation 
defines the correct semantics on Quantum 
SWITCH.



Ying defined two semantics for QuGCL. 

1. Original semantics 

2. General semantics determined for each parameter 
(includes 1. as an instance)

Comparison with Ying’s semantics for QuGCL
Equality of semantics

Theorem
In the simplest example we studied above, 

“the choice of dummy value” 
= “parameter for general semantics of QuGCL”.



The “initial states of environment” is  
closely related to our “dummy value”.

Comparison with Abbott et al. 20
Equality of semantics

[Abbott et al. 20]
To define a quantum controlled channel, we 
need not only the Kraus decomposition of 
channels, but additional information of “initial 
states of environment”.

Observation

Found non-trivial connection between 
[Ying 16] and [Abbott et al. 20]



• Program transformation 

• Comparison: Equality of semantics 

• Application: Quantum controlled while loop

Outline



Background
Quantum controlled while loop

//  : Data,   : qbit 
qwhile  { 
( , )  M( ) 

}

d q
q

d q ← d

Semantics Physical 
implementation

Measurement     
in M

Bădescu et al. 15 No

Ying et al. 14 Yes 
(Fock space)

No Yes

Sabry et al. 18 Yes 
(List of qubits)

Yes No



Question
Quantum controlled while loop

Q. Can we remove this limitation by moving measurements 
outside of “qwhile”? 

Quantum-while with measurement

= Quantum-recursion + list of qubit

• [Sabry et al. 18] Semantics with list of qubits 

• Has implementation

A. Yes!

• M has to be unitary

Sabry et al.’s language



Program Transformation
Quantum controlled while loop

//  : Data,   : qbit 
qwhile  { 

( , )  M( ) 
}

d q
q

d q ← d

Source program

   
   
( , , )  ( , , ) 
meas( )

q ← |0⟩
a ← |0⋯0⟩

d q a ← M d q a
a

First step:  Apply the program transformation to M

M ↦
}
}
}
Initial state

Unitary
Meas.

 : unitary part of MM



Program Transformation
Quantum controlled while loop

//  : Data,   : qbit 
qwhile  { 

( , )  M( ) 
}

d q
q

d q ← d

Source program

   
   

( , , )  ( , , ) 
meas( )

qi ← |0⟩

ai ← |0⋯0⟩

d qi ai ← M d qi ai

ai

M ↦

Prepare “list of s and s”, 
and apply  at the -th iteration

q a

M i

First step:  Apply the program transformation to M



Program Transformation
Quantum controlled while loop
Second step: rewrite qwhile

//  : Data,   : qbit,   : [qbit],   : [qbit], 
fun W( , , , ) { 

qif  { 
if let ( , ) = ( , ) { 

( , , )  ( , , ) 
( , , )  W( , , , ) 

} 
} 
( , , ) 

} 
( , , )  W( , , , ) 
meas( )

d q lq la
d q lq la

q
q′ :: lq′ a′ :: la′ lq la

d q′ a′ ← M d q′ a′ 

d lq′ la′ ← d q′ lq′ la′ 

d q :: lq′ a′ :: la′ 

d lq la ← d q |0⋯0⟩ |0⋯0⟩
la

Idea: 
 : list of   
 : list of 

lq q

la a

new_q = lq.next()
Apply M
Recursion

helper 
function

main 
part



• We propose a program transformation technique which 
moves measurement out of “qif” statement. 

• Physical implementable semantics. 

• Found non-trivial connection between Ying’s work and 
Abbott et al’s work. 

• This technique is also applicable to “qwhile”.

Conclusion



• In some cases, we do not need to introduce dummy value. 
(e.g. Quantum SWITCH)

Future Work

qif  { 

} else { 

}

q
then

else

measure

measure

qif  { 

} else { 

} 

q

then

else

measure

• And in some cases, quantum control on CPTP maps is 
well-defined [Abbott et al. 20]. 
(e.g. Quantum SWITCH) (when “then” and “else” branches uses 

the same combination of  CPTP maps)


